PART - I (PHYSICS)

(A) Jumper comes to rest first time after falling a distance $S = \frac{(k\ell + mg) + \sqrt{2mgk\ell + m^2g^2}}{k}$

- (B) Maximum speed attained $v = \sqrt{2gI \frac{mg^2}{k}}$
- (C) time of free fall from rest $-\sqrt{2I/g}$
- (D) time to come to rest for the first time $=\left(\frac{\pi}{2}\sqrt{\frac{m}{k}} + \sqrt{\frac{2l}{g}}\right)$
- Ans. D

-<mark>Arr S</mark>quare

F.T - 4 (MAIN) 06.01.2019

7. A screwgauage has pitch 1.5 mm and there is no zero error. Linear scale has marking at MSD – 1mm and there are 100 equal division of circular scale. When diameter of a sphere is measured with instrument, main scale is having 2mm mark visible on linear scale, but 3mm mark is not visible, 76th division of circular scale is in line with linear scale. What is the diameter of sphere.

(A) 2.64 mm

(B) 3.14 mm (C) 1.14 mm

(D) 2.76 mm

Ans. D

8.

A triangular purse moving at 2 cm's on a rope approaches an end at which it is free to slide on vertical pole. What is the particle speed at the free end at $\frac{3}{4}$ sec from the instant shown.

A) 2cm/s	(B) 1cm/s
C) 3cm/s	(D) 4cm/s

Ans. D

9. One mole of an ideal gas $\left(\frac{C_{\alpha}}{C_{r}} - \gamma\right)$ heated by law P = α V where P is pressure of gas, V is volume α is a

constant what is the heat capacity of gas in the process

(A)
$$C = \frac{R}{\gamma - 1}$$
 (B) $C = \frac{\gamma R}{\gamma - 1}$ (C) $C = \frac{R}{2} \frac{(\gamma - 1)}{(\gamma + 1)}$ (D) $C = \frac{R}{2} \frac{(\gamma + 1)}{(\gamma - 1)}$

Ans. D

10. A plane of core density 3p and outer crust of density p has small tunnel in core A small particle of mass m is released from end A then time required reach end B.

(A)
$$\sqrt{\frac{\pi}{\rho G}}$$
 (B) $\frac{1}{2}\sqrt{\frac{\pi}{\rho G}}$
(C) $\pi \sqrt{\frac{1}{\rho G}}$ (D) $2\pi \sqrt{\frac{1}{\rho G}}$

Ans. B

11. On a hypothetical planet satellite can only revolve in quantized energy level i.e. magnitude of energy of a satellite is integer multiple of a fixed energy. If two successive orbit have radius R and $\frac{3R}{2}$ what could be maximum radius of satellite (A) 9R (C) 6R (C) 4R (D) 3R

Ans. D

CHAMP SQUARE, Sunrise Forum, 2nd Floor (Debuka Nursing Home Lane), Circular Road, Ranchi – 834 001, Ph.: 0651-2562276

Square

F.T – 4 (MAIN) 06.01.2019

12. Find effective thermal resistance between A & B of cube made up of 12 rods of same dimensions and shown given thermal conductivity. [ℓ = length of rod, a = cross section area of rod]

(B) $\frac{2\ell}{kn}$

(D) $\frac{\ell}{2kn}$

(A)
$$\frac{\ell}{\text{kn}}$$

(C) $\frac{4\ell}{7\text{kn}}$

Ans. B

 Two immiscible liquid are filled in conical flask as shown in figure. The area of cross section is shown a small hole of area a is made in lower end of cone. Find speed of liquid flow from hole

(A)
$$\sqrt{\frac{2gh}{1-\frac{17a^2}{A^2}}}$$
 (B) $\sqrt{\frac{gh}{1-\frac{17a^2}{A^2}}}$
(C) $\sqrt{\frac{2gh}{1-\frac{17a^2}{32A^2}}}$ (D) $\sqrt{\frac{3gh}{1-\frac{17a^2}{32A^2}}}$

Open to air

Ans. D

14. Two vertical parallel plates are partially submerged in water. The distance between plate is equal to d. Water rises due to surface tension T, the width of plate is I, and contact angle of water with glass is 0. Find the force of attraction between the plates.

(A)
$$\frac{T^2 \ell}{pgd^2}$$
 (B) $\frac{2T^2 \ell}{pgd^2}$
(C) $\frac{T^2 \ell}{2pgd^2}$ (D) $\frac{T^2 \ell}{4pgd^2}$

Ans. B

15. For a system with Newton's law of cooling applicable the initial rate of cooling is $R^0C/$ sec find the time when temperature difference ΔT_0 = initial temperature difference, is reduced to half

(A)
$$\frac{\Delta T_0}{2R}$$
 (B) $2\Delta T_0$ (C) $\frac{\ell n(2)\Delta T_0}{R}$ (D) $\frac{\Delta T_0}{\ell n(2)R}$

Ans. C

16. Figure shows, 2 identical bulbs, B_1 and B_2 and a game of spring wheel divide into 6 equal parts of different colour as shown At t = 0, switch S is closed and simultaneously the wheel is set to rotation about its centre O in clockwise direction with initial angular velocity of 2.5π rad/sec. Find the colour on which student should place be if the colour appearing on pointer at an instant when both bulbs give same illumination is selected for wining given \rightarrow angular retardation of wheel due to friction and other effects is 2 rad/s² & take (ln 2 – 0.7)

Ans. C

17. A thin metallic partition of negligible thickness is inserted between two shaded metallic plates as shown. The remaining ends are then packed with insulating plates to form a container like structure.
2 taps shown are opened at t = 0 and finally closed at t = 5s. Find capacitance of system between A and B after closing taps. (Assume liquid to be non conducting) Volumetric flow rates and dielectric constant of liquid are given.

(A)
$$8.85 \times 10^{-11}$$
F
(B) 8.85×10^{-10} F
(C) 4.42×10^{-10} F
(D) 4.42×10^{-11} F
A

Consider a gravity free container as shown System in initially at rest and electric potential in the regions is $V = (y^3 + 2) J/C$. A ball of charge q and mass m is released from rest from base starts to move up due to electric field and collides with shaded face as shown If its speed just after collision is 1.5 m/s and time for which ball is in contact with shaded face is 0.1 sec, find external force required to hold the container fixed in its position during collision assuming ball exerts constant force on wall during entire span of collision.

(A) 70N	(B) 72N
(C) 74 N	(D) 76 N

Ans. D

19. If the figure shown are 2LED's that can be used as a polarity detector. Apply a positive source voltage and a green light results. Negative supplies results in a red light. Packages of such combination are commercially available. Find resistor R to ensure a current of 20 mA through the ON diode for the configuration. Both diodes have reverse breakdown voltage of 3V and average turn on voltage of 2V.

(A) 250 Ω	(B) 300 Ω
(C) 325 Ω B	(D) 400 Ω

 $q = \frac{-1}{2}C, m = 2kg$

z

- MP Square

F.T – 4 (MAIN) 06.01.2019

20. Captain Jack sparrow tires to observer a fish almost vertically below him in a magical sea of variable $\mu = y^2 + 1$ where y is depth below water surface. Find the apparent depth of fish below water level as seen by captain jack sparrow.

(A)
$$\frac{\pi}{4}$$
m (B) $\frac{\pi}{2}$ m

C)
$$\frac{\pi}{2}$$
m (D) π m

Ans.

Δ

21. Figure shows 2 NAND gates followed by a NOR gate. The systems is equivalent to one gate G with input X, Y, Z and output R. What is G?
(A) OR
(B) NAND
(C) XOR
(D) AND

Ans. D

22. A radiowave has maximum electric filed intensity of 10⁻⁵V/m on arrival at a receiving antenna. The maximum magnetic flux density of such a wave is

(A) 2×10^{3} T (B) 3×10^{4} T (C) 5.2×10^{3} T (D) 3.3×10^{-3} T

Ans. D

23.

Ans.

24. A conducting rod PQ of I = 5cm oriented as thrown is moving with V = (2m/s)j without any rotation in a uniform magnetic field $(3\hat{j} - 4\hat{k})$ Tesla. Emf induced in the rod is (A) 32V (B) 40 V

(C) 50 V (D) None

Ans. A

HAPSquare

Figure shows a system of inductor and parallel plate capacitor made of 2 parallel circular plates of area A and filled with dielectric liquid of dielectric constant K as shown

A small leak develops in capacitor and liquid starts to fill the inductor of same dimensions having n turns / unit length. Find the ratio of magnitude if initial to final reactance of circuit after liquid fills the inductor completely.

Given : $\omega^2 A^2 n^2 = c^2$

 $\omega \rightarrow$ angular frequency of AC

 $\mathsf{c} \to \mathsf{speed}$ of light

and $\mu \rightarrow$ relative permeability of liquid

(A) $K \frac{(K-1)}{(\mu_r + 1)}$	(B) $\frac{1}{K} \frac{(1-K)}{(1-\mu_r)}$
(C) $\frac{(1+\mu_r)}{(1+K)}$	(D) $\frac{1}{K} \frac{(K+1)}{(1-\mu_1)}$

Ans. B

25.

26. Figure shows a thick shell made of electrical conductivity σ and has inner & outer radii of 10 cm & 20 cm respectively and is filled with ice inside it. Its inside and outside surface are kept at different potentials by a battery of internal resistance $\frac{2}{\pi}\Omega$ & $\varepsilon = 5V$. Find value of σ for which ice melts at maximum possible rate if 25% of heat generated by shell due to joule heating is used to melt ice.

(A)
$$\frac{5}{3}$$
 siemen/m (B) 2siemen/m
(C) $\frac{1}{2}$ siemen/m (D) $\frac{5}{8}$ siemen/m

Ans. D

27. Using thomson's model of the atom consider an atom consisting of two electrons, each of charge –e, embedded in a sphere of charge +2e and radius R. In equilibrium each electron is at a distance d from the centre of the atom. What is the equilibrium separation between electrons.

F.T - 4 (MAIN) 06.01.2019

bouare

wavelength of K_a line to that of K_a line in X-ray spectrum is: (A) $\frac{22}{3}$ (B) $\frac{3}{22}$ (C) $\frac{22}{25}$ (D) $\frac{25}{22}$

PART – II (CHEMISTRY)

1	

1.	Isotope	Relative	e abundance (%)	Atomic mass	
	12		98.8	12	
	13		1.18	13.1	
	14		0.02	14.1	
	From above	data what is	s the molecular mass	of CH ₄ containing	g all isotopes of carbon but hydrogen as 1_1 H
	(Given that a	atomic mass	of hydrogen = 1.008)		
_	(A) 16.004 u	ı ((B) 16.21 u	(C) 16.125 u	(D) 16.42 u
Ans.	Α				
2.	Select the co	orrect statem	ent for quantum numb	ers.	
	(i) Magnetic standard set	quantum no	o (m_ℓ) gives inform te axis.	ation about the s	sparial orientation of orbitals with respect to
	(ii) Electron	spin quantum	n no. is represented by	/ 's' and have val	ue ' <mark>1</mark> '
	(iii) Principal orbitals.	l quantum no	. (n) determine the siz	e of the orbitals a	and also to a large extent of the energy of the
Ans.	(A) Only (i) , A	(iii) (B) Only (iii)	(C) Only (i)	(D) (i), (ii), (iii)
3.	Select the co (i) Critical te (ii) Standard (iii) Critical v (A) Only (ii)	orrect statem mperature of boiling point olume of H ₂ C (ent about water. H ₂ O is less than NH ₃ of water is 100° C. D is less than NH ₃ . (B) Only (ii), (iii)	(C) Only (iii)	(D) (i), (ii), (iii)
Ans.	В				
4.	 For 1st law of thermodynamics select the correct option (A) The energy of a closed system is constant. (B) 1st law is commonly stated as the law of conservation of energy i.e., energy can neither be created nor be destroyed. (C) It is applicable only for reversible process. (D) Both (A) & (B) 				
Ans.	В				
5.	At 1 bar and	298 K, stand	dard molar enthalpy of	formation of whic	h substance is zero.
	(A) CH ₄ (g)	(B) C(diamond)	(C) Br₂ (ℓ)	(D) All correct
Ans.	С				
6.	Order of solu (i) In pure wa (ii) In presen (iii) In presen (iv) In presen (Assuming 1 take place. (A) (ii) < (i) <	ubility of solid ater nce of 0.1 M A nce of 2 M ac nce of 2M aq 100% dissoci	AgCI(s)in given case AgNO ₃ a. Solution of KCN . Solution of NH ₃ iation of AgNO ₃ , KCN	es. I and Ca(CN) ₂) a (B) (ii) < (i) < (iii	nd complex formation with NH_3 and CN^- will (iv)
Ans.	(C) (II) < (I) < C	< (III) < (III)		(ו) < (וו) < (וו) < (וו	$y < \langle v \rangle$

ouare

- 7. Select the incorrect option:
 - (A) Each species appearing in balanced chemical equation must appear in kinetic rate law.
 - (B) Bimolecular elementary reaction is always second order.
 - (C) Hydrolysis of ester in alkaline medium is bimolecular second order reaction.
 - (D) Order and molecularity may be same for a chemical reaction.

(B) $60\sqrt{3}$ pm

Ans. Α

- 8. In CsCl type structure if radius of cation and anion are 80 pm and 100 pm respectively then closet distance between two cations is:
 - (A) 180 pm

- (C) 90pm
- (D) 120√3pm

- D Ans.
- 9. Select the correct option:
 - (A) Gold sol is negatively charged
 - (B) Peptization is method of purification of sols.
 - (C) Persistent dialysis is method of coagulation.
 - (D) Both (A) and (C)

Ans. D

Ans.

Conductivity of 0.01 M aq. Solution of Na₂SO₄ is found to be 2.6×10^{-3} Scm⁻¹ at 25^oC. If limiting molar 10. conductance of Na is 50 S cm² mol⁻¹, then limiting molar conductance of SO_4^{2-} will be (neglect conductivity of water). (B) 160 S cm² mol⁻¹

(D) 120 S cm² mol⁻¹

- (A) 80 S cm² mol⁻¹ (C) 40 S cm² mol⁻¹
- R
- The following compound has four aromatic rings marked as A, B, C and D. Rank them in terms of increasing 11. reactivity towards electrophilic aromatic substitution?

	(A) C < D < A< B	(B) C < B < D < A	(C) C < B < A < D	(D) B < C < D < A
ns.	В			

Ans.

- 12. Some addition reaction of alkene are given below identify the one which fits on all the given criteria. Reaction must have
 - (A) Stereochemistry of addition SYN ONLY
 - (B) Regiochemistry of addition ANTI MARKOVNIKOV
 - OR
 - ANTI MARKOVNIKO LIKE

Ans. I

14. Which among the following compound , is a β - ketohexafuranose?

16. Which does NOT liberate H₂ gas on reaction with Na – metal?

auare

Ans. C

17. Match the processes in Column I with the characteristics (they have) in Column II and select the answer from the codes given.

Column – I		Column – II		
(I.)	$S + e^- \rightarrow S^-$	(P)	Exothermic process	
(II)	$0^- + e^- \rightarrow 0^{2-}$	(Q)	Endothermic process	
(III)	$Mg \rightarrow Mg^{2+} + 2e^{-}$	(R)	Inert gas configuration is attained.	
(IV)	$N \rightarrow N^+ + e^-$	(S)	Half-filled configuration is attained	
(V)	$0 \rightarrow 0^+ + e^-$	(T)	Half-filled configuration is lost	

Codes:

I

II III IV V

- (A) I P, II Q,R, III Q,R, IV Q,T, V Q,S
- (B) I P,R, II Q,R, III Q,R, IV S, V Q,S
- (C) I P,R, II Q,R, III Q,R, IV Q,T, V Q,S
- (D) I P, II Q, III R, IV Q,T, V Q,S

Ans.

Α

18.

X & Y respectively:

	Х	Y
(A)	(a) Li(t – BuO) ₃ AlH	(a) LiAlH
	(b) H ₂ O	(b) H ₂ O
(B)	(a) NaBH ₄	H ₂ – Raney Ni
	(b) H ₂ O	
(C)	(a) DIBAL – H	(a) LiAlH ₄
	(b) H ₂ O	(b) H ₂ O
(D)	(a) NaBH ₄	(a) DIBAL - H
	(b) H ₂ O	(b) H ₂ O

(DIBAL – H Diisobutylaluminum hydride)

Ans. D

- 20. You have two $C_6H_{10}O$ ketones, I and II. Both are optically active , but I is racemized by treatment with acid and II is not . Wolf kishner reduction of both ketones gives the same achiral hydrocarbon, formula C_6H_{12} . What reasonable structure may be assigned to I and II respectively?
 - (A) I is 3 Methyl-4-Penten-2-one
 - II is 4-Methyl-1-Pentane-3-one
 - (B) I is 2 Methyl cyclopentanone
 - II is 3 Methyl cyclopentanone
 - (C) I is 3 Methyl cyclopentanone
 - Il is 2 Methyl cyclopentanone
 - (D) I is 2 Methyl cyclobutanone II is 3 – Ethyl cyclobutanone
- Ans. B

Ans.

В

- 21. Which of the following does not have the correct order of given property?
- (A) Ga < AI < In < TI (Atomic size) (B) $I_3 < F_2 < CI_2 < Br_2$ (Bond energy) (C) PH = A NH = A H = C (Beiling point) (D) PE = A NH = A NH = (Dipole memory)
- (C) $PH_3 < NH_3 < HF < H_2O$ (Boiling point) (D) $BF_3 < NF_3 < NH_3$ (Dipole moment) Ans. **B**
- 22. The distance between two adjacent carbon atoms is maximum in:
 (A) Diamond (B) Graphite (C) Benzene (D) Ethene
 Ans. A
- 23. Which of the following does not liberate a brown gas? (A) Action of heat on LiNO₃ (B) Action of heat on KNO₃ (D) Addition of conc. H₂SO₄ on NaNO₃ (C) Reaction of zinc with conc. HNO₃ Ans. в 24. Self reduction process is used in the extraction of (D) Lead (A) Iron (B) Zinc (C) Aluminium Ans. D The ammine complex of metal ions Cu²⁺, Ni²⁻ and Zn²⁺ have shapes respectively – 25. (A) Tetrahedral, Square planar, Tetrahedral (B) Square planar, Octahedral, Tetrahedral (C) Square planar, Tetrahedral, Octahedral (D) Tetrahedral, Square planar, Octahedral

26. Geometrical as well as optical isomerism is shows by:

Souare

(A) $\left[Cr \left(C_2 O_4 \right)_3 \right]^{3-}$	$(B)\left[Co\left(NH_{3}\right)_{2}CI_{3}\right]$
(C) $\left[Cr(H_2O)_2(C_2O_4)_2 \right]^{-1}$	(D) $\left[Co(en)Cl_4 \right]^{-}$
C	

Ans. C

- 27. The reaction of white phosphorus with sodium hydroxide solution gives:
 - (A) Phosphine and sodium salt of a dibasic acid
 - (B) Phosphine and sodium salt of a monobasic acid
 - (C) Phosphine and sodium salt of a tribasic acid
 - (D) None of these

Ans. B

28. The qualitative distinction of $ZnSO_4$ and $Al_2(SO_4)_3$ can be done by using the reagent: (A) NH₄OH (B) NaOH (C) Any of these (D) None of these Ans. Ď 29. KI is oxidized into I₂ by using the reagent: (A) KMnO₄ (neutral or slightly alkaline solution) (B) Ozone (alkaline solution) (C) CuSO₄ Solution (D) All of these Ans. С 30. Ammonia is liberated in the reaction of: (A) $Mg_3N_2 + H_2O$ (B) NaNO₃ + Zn + NaOH (C) CaNCN + H₂O (D) All of these

Ans. D

PART – III (MATHEMATICS)

1.	The solution of D.E. $(x \cot y + \ln \cos x) dy + (\ln \sin y - \tan x) dx = 0$					
	(A) $(\sin x)^{y}(\cos y)^{x} =$	с	(B) (siny) ^x (co	$(DSX)^{y} = C$		
	(C) $(\sin x)^{y}(\sin y)^{x} =$	с	(D) (cot x) ^y (c	$(ot y)^{X} = c$		
Ans.	В					
2.	If $f(x)$ be such that $f(x) = max(2-x , 2-x^3), x \in R$ (A) $f(x)$ is discontinuous at one point (B) $f(x)$ is differentiable $\forall x \in R$ (C) $f(x)$ is non differentiable at one point only (D) $f(x)$ is non differentiable at 4 points only					
Alls.	If the range of $f(x) = \frac{2x}{x}$	$\frac{4^{4}-14x^{2}-8x+49}{1}$ is (a.1)	ol then (a + b) is [.]			
0.	(A) 3	$4^{4} - 7x^{2} - 4x + 23$ (B) 4	(C) 5	(D) 6		
Ans. 4.	C Let $f(x) = x^3 - 3x^2 + 3x^3$ between x = 1, x = 2 is ((in square units.)	of f(x), then area bound	ded by the curve $y = g(x)$ with x axis		
	(A) $\frac{1}{2}$	(B) $\frac{1}{4}$	(C) $\frac{3}{4}$	(D) 1		
Ans.	В					
5.	If f(x) satisfy the relation	$f\left(\frac{5x-3y}{2}\right) = \frac{5f(x)-3f(x)}{2}$	$\frac{(y)}{2} \forall x, y \in R f(0) = 1, f'(0)$	0) = 2 then period of sin (f(x)) is		
Ans.	(A) 2π B	(B) π	(C) 3π	(D) 4π		
6.	If $\sum_{k=1}^{12} 12K^{-12}C_k \cdot {}^{11}C_{k-1}$ is	equal to $\frac{12 \times 21 \times 19 \times 17}{11!}$	$\times \dots \times 3 \times 2^{12} \times p$ then (o is		
Ans.	(A) 2 D	(B) 4	(C) 8	(D) 6		
7.	The line $\frac{x-2}{3} = \frac{y+1}{2} = \frac{x-2}{2}$	$\frac{z-1}{-1}$ intersects the curve	$xy = c^2$, $z = 0$ if c is equal	al to		
	(A) ±1	(B) $\pm \frac{1}{3}$	(C) ±√5	(D) ± 2		
Ans.	C					
8.	If $\int_{0}^{\infty} f(x) dx = 1$ then $\int_{0}^{\infty} f(x) dx = 1$	$\left(x-\frac{1}{x}\right)dx$ is equal to				
Ans.	_∞ _∞ (A) 0 B	(B) 1	(C) – 1	(D) 2		
0	ABCD is a rhombus. Th	a aircumradii of AADD a	25 and 25	Then the erec of thempine is		
9.	(A) 400 sq. unit	(B) 600 sq. unit	(C) 200 sq. unit	(D) 800 sq. unit		
Ans.	Α					
10.	If z is a complex numbe (A)equal to 4	r satisfying $ z ^2 - z ^2$ (B) equal to 6	2 < 0, then the value of (C) more than 6	$Z^2 + Z \sin \theta$, for all value of θ is (D) less than 6		
Ans. 11.	D If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then					
	(A) k = c	(B) $k = -\frac{c}{6}$	(C) $a + \frac{c}{2b} + k = 0$	(D) None of these		
Ans.	C					
12.	The value of $\lim_{x\to\infty} \frac{1}{3.7} + \frac{1}{3.7}$	$\frac{1}{7.11} + \frac{1}{11.15} + \dots + \frac{1}{(4n - 1)}$	$\frac{1}{1)(4n+3)}$ is			
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) $\frac{1}{12}$	(D) 0		
Ans.	С					

CHAMP Square

13.	Let $f(x) = \int_{0}^{x} (t^2 + 2t + t) dt$	2)dt, where x is	set of real n	umbers satisfying the inequation			
	$\log_{\sqrt{2}}\left(1+\sqrt{6x-x^2-8}\right) \ge 0$. If range of f(x) is [a, b] then (a+b) is						
	(A) 50	(B) 56	(C) 72	(D) 32			
Ans.	В						
14.	The equation of the pla perpendicular to the pla	ane through the intersect ane $x + y + z - 1 = 0$ and	ion of the planes x + 2 I x + ky + 3z – 1 = 0. Th	y + z - 1 = 0 and $2x + y + 3z - 2 = 0$ and hen the value of k is			
	(A) $-\frac{5}{3}$	(B) <u>-</u>	(C) $\frac{5}{1}$	(D) $\frac{3}{2}$			
Ans	2 C	2	2	2			
/		2					
15.	Let $f(x) = \begin{cases} x^p \sin\left(\frac{1}{x}\right)^2 \\ \frac{1}{x} & \frac{1}{x} \end{cases}$	+ x x ^o , x ≠ 0 then co	mplete set of values for	or which $f'(x)$ is continuous at $x = 0$ is			
	0,	x = 0					
	(A) [2, ∞)	(B) [3, ∞)	(C) (4, ∞)	(D) [-2, ∞)			
Ans.	C						
16.	If $\lim_{x \to \frac{1}{2}} \frac{ax^2 + bx + c}{(2x - 1)^2} = \frac{1}{2}$	then $\lim_{x\to 2} \frac{(x-a)(x-b)}{x-2}$	$\frac{(x-c)}{s}$ is				
	(A) O	(B) <u>1</u>	(C) 2	(D) 6			
A	(A) 0	2	(0) 2				
Ans.	D	٦					
17.	If $\frac{d}{dx} \left[\frac{2x^3 + 3x^2 + x - 3}{x^2 + x - 2} \right]$	$\left = A + \frac{B}{(x-1)^2} + \frac{C}{(x+2)} \right $	$\frac{1}{2}$ then (A – B + C) is				
	(A) 4	(B) 7	(C) – 2	(D) 0			
Ans.	D Lines are drawn from a	a point $P(-1, 3)$ to a circle	$x^2 + y^2 - 2x + 4y - 8$	-0 Which meets the circle at 2 points A			
10.	& B, then the minimum	value of PA + PB is	2				
A	(A) 6	(B) 8	(C) 10	(D) 12			
Ans.			T., a				
19.	If $T_n = (n^2 + 1)n!$ & S	$S_n = T_1 + T_2 + T_3 + \dots$	T_n . Let $\frac{H_0}{S_{10}} = \frac{u}{b}$ whe	ere a & b are relatively prime natural			
	numbers, then the value	ue of (b- a) is	10				
Ano	(A) 8	(B) 9	(C) 10	(D) 11			
AII5.	\mathbf{D}	$f(c_x^2 = 4x^3 = 2) \forall x = D$	and $f''(x) > 0 \forall x = 1$	\mathbf{D} then $\mathbf{a}'(\mathbf{x}) > 0$ for \mathbf{x} belonging to			
20.	$II \ g(x) = 2I(2x - 3x)$	$+1(0X - 4X - 3), \forall X \in \mathbb{N}$	and i $(x) > 0, \forall x \in \mathbb{R}$	\mathbf{R} , then $\mathbf{g}(\mathbf{x}) > 0$ for \mathbf{x} belonging to			
	(A) $\left(-\infty,-\frac{1}{2}\right) \cup (0,1)$	(B) $\left(-\frac{1}{2},0\right) \cup (1,\infty)$	(C) (0, ∞)	(D) (-∞, 1)			
Ans.	B	(2)					
		-					
21.	Let $I = \int_{0}^{\pi/6} \frac{\cos x}{x} dx, J = \int_{\pi/6}^{\pi/6} \frac{\cos x}{x$	$\frac{2}{3} \frac{\cos x}{x} dx$. Which of the f	ollowing is CORRECT?	?			
	(A) $I < \frac{\pi}{-}, J < \frac{\pi}{-}$	(B) $I > \frac{\pi}{2}, J < \frac{\pi}{2}$	(C) $I < \frac{\pi}{-}, J > \frac{\pi}{-}$	(D) $I > \frac{\pi}{J}, J > \frac{\pi}{J}$			
Δne	6 6 B	6 6	6 6	6 6			
AIIS.							
22.	A variable line ax + by	+ c = 0, where a, b, c are	e in A.P, is normal to a	a circle.			
	$(x-\alpha)^2 + (y-\beta)^2 = \gamma$ which orthogonal to circle $x^2 + y^2 - 4x - 4y - 1 = 0$. The value of $\alpha + \beta + \gamma$ is						
equal to							
Ans.	(A) 3 D	(B) 5	(C) 10	(U) /			

CHAM2Square

				· · ·
23.	If $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ and $A^3 = (aA - I)(bA - I)$, where a, b are integers and I is a 3 × 3 unit, then value of (a + b) is			
	equal to (A) 4	(B) 5	(C) 6	(D)7
Ans.	С			
24.	The statement $[(p \land q) \rightarrow p] \rightarrow (p \land \sim q)$ is			
	(A) tautology (C) open statement		(B) contradiction (D) neither tautology no	or contradiction
Ans.	B			
25.	The average marks of 10 students in a class was 60 with a standard deviation 4, while the average marks of other students was 40 with a standard deviation 6. If all the students are taken together, their standard deviation will be			
	(A) 5	(B) 7.5	(C) 9.8	(D) 11.2
Ans. 26	D The number of ways in	which 3 children can dis	tribute 10 tickets out of 1	5 consecutively numbered tickets
20.	themselves such that they get consecutive blocks of 5, 3 and 2 tickets is			
Ans.	(A) ⁵ C ₅ C	(B) [°] C ₅ 3!	$(C) C_{3} (3!)^{2}$	(D) None of these
27.	Let $\vec{b} = -\hat{i} + 4\hat{j} + 6\hat{k}$ and $\vec{c} = 2\hat{i} - 7\hat{k} - 10\hat{k}$. If \vec{a} be a unit vector and the scalar triple product $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}$ has the			
	greater value, then a is equal to			
	(A) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$	(B) $\frac{1}{\sqrt{5}} \left(\sqrt{2\hat{i}} - \hat{j} - \sqrt{2\hat{k}} \right)$	$(C) \ \frac{1}{3} \Big(2\hat{i} + \hat{j} - \hat{k} \Big)$	(D) $\frac{1}{\sqrt{59}} \left(3\hat{i} - 7\hat{j} - \hat{k} \right)$
Ans.	C	antar of the triangle form	ad by the feed about of t	x = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
28.	I he locus of the orthocenter of the triangle formed by the focal chord of the parabola $y = 4ax$ and the normal's drawn at its extremities is			
_	(A) $y^2 = a(x - 3a)$	(B) $y^2 = a(x + 3a)$	(C) $y^2 = a(x - 4a)$	(D) $y^2 = a(x - 4a)$
Ans. 29	A In a tournament there are twelve players P, P, P, P, P, and divided into six pairs at random. From			
20.	each game a winner is decided on the basis of game played between the two players of the pair. Assuming each player is of equal strength then the probability that exactly one out of P_1 and P_2 is among the loser is :			
	(A) $\frac{5}{44}$	(B) $\frac{6}{44}$	(C) $\frac{1}{2}$	(D) $\frac{5}{22}$
Ans.	B	11	2	22
30.	Point from which two distinct tangents can be drawn on two different branches of the hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$			
	but no two different tangent can be drawn to the circle $x^2 + y^2 = 36$ is			
	(A) (1, 6)	(B) (1, 3)	(C) (7, 1)	(D) $\left(1,\frac{1}{2}\right)$
Ans.	В			× /